Hypercontractive inequalities for weighted Bergman spaces

نویسندگان

چکیده

We obtain sharp L p → q $L^p\rightarrow L^q$ hypercontractive inequalities for the weighted Bergman spaces on unit disk D $\mathbb {D}$ with usual weights α − 1 π ( | z 2 ) , > $\frac{\alpha -1}{\pi }{(1-|z|^2)}^{\alpha -2},\alpha >1$ ⩾ $q\geqslant 2$ thus solving an interesting case of a problem from Janson [Ark. Math. 21 (1983), no. 1, 97–110]. also give some estimates 0 < $0<q<2$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Operators on weighted Bergman spaces

Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...

متن کامل

Removable singularities for weighted Bergman spaces

We develop a theory of removable singularities for the weighted Bergman space Aμ(Ω) = {f analytic in Ω : R Ω |f | dμ < ∞}, where μ is a Radon measure on C. The set A is weakly removable for Aμ(Ω \ A) if Aμ(Ω \ A) ⊂ Hol(Ω), and strongly removable for Aμ(Ω \A) if Aμ(Ω \A) = Aμ(Ω). The general theory developed is in many ways similar to the theory of removable singularities for Hardy H spaces, BMO...

متن کامل

Weighted Two-parameter Bergman Space Inequalities

In this inequality, ∇ denotes the full gradient in R + : ∇ = (∂/∂x1, . . . , ∂/∂xd, ∂/∂y); R + is the usual upper half space Rd×(0,∞); μ is a positive Borel measure defined on R + ; and v is a non-negative function in Lloc(R d). We studied this inequality primarily for p and q in the range 1 < p ≤ q < ∞. For the case in which q ≥ 2, we proved sufficient conditions on μ and v (depending on p, q,...

متن کامل

Norm Inequalities for Composition Operators on Hardy and Weighted Bergman Spaces

Any analytic self-map of the open unit disk induces a bounded composition operator on the Hardy space H and on the standard weighted Bergman spaces Aα. For a particular self-map, it is reasonable to wonder whether there is any meaningful relationship between the norms of the corresponding operators acting on each of these spaces. In this paper, we demonstrate an inequality which, at least to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2023

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12883