Hypercontractive inequalities for weighted Bergman spaces
نویسندگان
چکیده
We obtain sharp L p → q $L^p\rightarrow L^q$ hypercontractive inequalities for the weighted Bergman spaces on unit disk D $\mathbb {D}$ with usual weights α − 1 π ( | z 2 ) , > $\frac{\alpha -1}{\pi }{(1-|z|^2)}^{\alpha -2},\alpha >1$ ⩾ $q\geqslant 2$ thus solving an interesting case of a problem from Janson [Ark. Math. 21 (1983), no. 1, 97–110]. also give some estimates 0 < $0<q<2$ .
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملRemovable singularities for weighted Bergman spaces
We develop a theory of removable singularities for the weighted Bergman space Aμ(Ω) = {f analytic in Ω : R Ω |f | dμ < ∞}, where μ is a Radon measure on C. The set A is weakly removable for Aμ(Ω \ A) if Aμ(Ω \ A) ⊂ Hol(Ω), and strongly removable for Aμ(Ω \A) if Aμ(Ω \A) = Aμ(Ω). The general theory developed is in many ways similar to the theory of removable singularities for Hardy H spaces, BMO...
متن کاملWeighted Two-parameter Bergman Space Inequalities
In this inequality, ∇ denotes the full gradient in R + : ∇ = (∂/∂x1, . . . , ∂/∂xd, ∂/∂y); R + is the usual upper half space Rd×(0,∞); μ is a positive Borel measure defined on R + ; and v is a non-negative function in Lloc(R d). We studied this inequality primarily for p and q in the range 1 < p ≤ q < ∞. For the case in which q ≥ 2, we proved sufficient conditions on μ and v (depending on p, q,...
متن کاملNorm Inequalities for Composition Operators on Hardy and Weighted Bergman Spaces
Any analytic self-map of the open unit disk induces a bounded composition operator on the Hardy space H and on the standard weighted Bergman spaces Aα. For a particular self-map, it is reasonable to wonder whether there is any meaningful relationship between the norms of the corresponding operators acting on each of these spaces. In this paper, we demonstrate an inequality which, at least to a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2023
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12883